

LBNE Photon Detector System Performance Studies at TallBo

Stuart Mufson
Denver Whittington

Indiana University

February 14, 2014

- Acrylic bar spray-coated with wavelength shifting compound
 - Inspired by design from MIT
 - 6 mm x 1 in x 20 in
 - 1 m long in FD, 4 per paddle
 - Wavelength shifter (WLS) melted into surface
 - Tetraphenyl butadiene (TPB) or
 - 1,4-bis-(o-methyl-styryl)-benzene (bis-MSB)
 - Comparing 10, 20, 35, & 50 coats

425 nm shifted light (in bar)

- 3 Silicon Photomultipliers (SiPM) read out end of bar
 - Strongly reverse-biased array of photodiodes
 - SensL MicroFB-60035-SMT
 - 6 mm x 6 mm active area (18960 microcells)
 - 24.5 V bias (gain of a few x10⁶)
 - Signal into shaper/amplifier (gain ~200)

- 4 PD paddle prototypes
 - 4 bars per paddle
 - 14 flash-heated (IU)
 - 2 hand-painted (MIT)
- Hodoscope array and scint. paddles
 - 4-fold coincidence for cosmic ray selection and track reconstruction
- Goals
 - Exercise readout of multiple paddles
 - Study relative light yields from various waveshifter/coating combinations
 - Study scintillation detection from cosmics with a large variety of tracks through LAr volume
- Two operating modes
 - Cosmic hodoscope trigger
 - Free run (self-triggered)

- Installation on October 11, LAr on October 16/17
- Successful operation until October 31

Variety of track trajectories through hodoscope to study

Side View

Y-Z coordinate of Hodoscope Hit, with all track trajectories

Top View

Example Track viewed by Paddle B

Hodoscope track selection great, but makes cross-paddle comparisons difficult
 All Track Trajectories, Top View

All Track Trajectories, Si

 Similar coverage within each paddle

> On-diagonal paddles best exposed

 Uneven coverage of different paddles

- "Free run" mode to collect light from all cosmics through dewar
 - Eventually collect light from all points in LAr volume
 - Even and comparable exposure of all bars

Light Yield Comparisons (Free Run)

- * "Free run" mode (self-triggered, or of all SiPMs in a paddle)
 - Light from all cosmics through dewar
 - Look at distribution of calibrated signal amplitudes on each SiPM
- Each bar experiences approximately the same light exposure
 - Studied with toy MC
- Look for relative differences in light yield distributions
 - Total number of photons collected per hour
 - Shape of power-law fit to distribution
 - Longer tail indicates better efficiency

- Total number of photons collected per hour by each bar
 - Averaged over functional SiPMs

Photons Collected per hour (from 10+ PE triggers)

- 35 coats best option for both TPB & bis-MSB
- Hand-painted bars most efficient (but not a scalable method)

Intra-Paddle Comparison (Hodoscope Tracks)

Conclusions from TallBo Run

- Free run mode provides good handle on bar-to-bar performance comparisons
 - Two useful figures of merit
 - Total photons collected per hour
 - Shape of signal amplitude (PE) distribution
 - Consistent with intra-bar comparisons from hodoscope tracks
- Best flash-heated bars
 - TPB 20-35 coats
 - Bis-MSB 35 coats
- Hand-painted TPB bars overall best
 - Flash-heating may be damaging too much waveshifter
 - May also worsen surface quality (more losses at internal reflections)
 - "Artisan" bars not scalable manufacturing method
 - Assembling roll-coater to produce consistent bars
 - Testing cast acrylic doped with 1% TPB
- Mechanical malfunction led to loss of signal from 7 SiPMs
 - Have revised SiPM mount design

LBNE Photon Detector prototype tests continue

- TallBo experience was very valuable
 - much experience & insight gained
 - several revisions underway

Analyses continuing

- Bar-to-bar comparisons
- Light yield vs track position
- Effects of Xe-doped LAr
- Properties of late light signal

Ready for round two!

- Investigating alternatives to flash heating
- Looking forward to testing new ideas

Big thanks to everyone who helped make this possible!

- Indiana U.
 - Stuart Mufson, Jim Musser, Mark Gebhard, Brice Adams, Mike Lang, Brian Baugh, Paul Smith, Tad Baptista, Bryan Martin
- > MIT
 - Janet Conrad, Matt Toupes,
 Zander Moss, Ben Jones, Len Bugel
- Colorado State U.
 - Norm Buchanan, Dave Warner
- Argonne Natl. Lab
 - Gary Drake, Patrick De Lurgio, Zelimir Djurcic, Himansu Sahoo, Vic Guarino
- Fermilab
 - Brian Rebel, Stephen Pordes,
 Ron Daves, Bill Mills, Marvin Johnson

Backup

- Leading pulse from prompt scintillation (τ ~ 6 ns)
- Post-pulse activity from secondary scintillation (τ ~ 1.6 μs)
- Pulse heights fall into discrete values, corresponding to integer photoelectron signals

Light Yield Comparisons (Free Run)

Paddle A

Paddle B

Light Yield Comparisons (Free Run)

Paddle C

Paddle D

Simulate light from cosmics through LAr volume

- Johnathon Lowery (IU)
- Throw cosmic ray, throw photons along track, see how much hits each bar along length

- Scintillation exposure versus position along bar
 - All bars receive approximately the same number of photons along length
 - Minimal variation between bars in different paddles
 - Confident this is a good metric

- Exponent
 - (smaller is better!)

Both figures of merit well correlated

- Two 8x8 Arrays of PMTs from CREST balloon-based cosmic ray experiment
 - Barium-fluoride crystals with TPB coating
 - Positioned on opposite sides of dewar (one elevated 48")
- Plastic scintillator paddles
 - Gamma (Compton, etc.) veto
 - BaF₂ crystals sensitive to x-rays
- Shower vs single particle discrimination
- Approximate track reconstruction
- Four-fold coincidence trigger
 - >1 PMT on each array
 - One paddle on each side
 - ~2 Hz 4-fold trigger rate

Paddle B (Tracks far from readout = weaker average signal)

- Returning to PAB starting February 24th
- New technologies
 - New custom readout electronics from G. Drake et. al. (ANL)
 - New cables (twisted pair)
 - previous found to be prone to noise pickup
 - Test of new LED-based calibration system (Z. Djurcic)
- Larger diversity of bar designs
 - Flash-heated TPB (35 coats) and Bis-MSB (35 coats) (IU)
 - Cast with TPB (IU)
 - Cast with TPB (LBNL)
 - Dip-coated TPB (MIT)
 - Fiber mounts (CSU)
 - Roll-coat painted (IU)
- Will rely on free-run mode for primary bar-to-bar performance comparisons, with hodoscope as cross-check.

- Set of 3 independent SiPMs
 - SensL MicroFB-60035-SMT
 - 24.5 V bias

- Nevis shaper/amplifier
 - Differential shaping
 - Gain ~ 200x

- CAEN DT5740
 - 32 input channels
 - 62.5 MHz sample rate
 - (16 ns / sample)
 - 0.48 mV / ADC Count
 - (12-bit, 2 V pp input range)

Average Light Collected per SiPM vs

Transverse Track Position, Bar A-1

Yields vs Track Proximity, Paddle A

Transverse Track Position, Bar A-2

TPB 20

Perpendicular Distance from Bar [in]

TPB 10

- Attenuation Length Measurement in LAr
 - Select tracks within 3 inches of bar surface

Paddle B

Paddle C

Comparison to Dark Box (245 nm LED)

- Possible increase of losses at surface (internal reflection)
- Simulated light bouncing down length of acrylic bar in LAr
- Very minor effect going from air to liquid argon
- Can mimic change in attenuation length by increasing surface loss %

